Distribution of Integer Lattice Points in a Ball Centred at a Diophantine Point

نویسندگان

  • HYUNSUK KANG
  • ALEXANDER V. SOBOLEV
چکیده

We study the variance of the fluctuations in the number of lattice points in a ball and in a thin spherical shell of large radius centred at a Diophantine point. §

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial statistics for lattice points on the sphere I‎: ‎Individual results

‎We study the spatial distribution of point sets on the sphere obtained from the representation of a large integer as a sum of three integer squares‎. ‎We examine several statistics of these point sets‎, ‎such as the electrostatic potential‎, ‎Ripley's function‎, ‎the variance of the number of points in random spherical caps‎, ‎and the covering radius‎. ‎Some of the results are conditional on t...

متن کامل

Minimizing the number of lattice points in a translated polygon

The parametric lattice-point counting problem is as follows: Given an integer matrix A ∈ Zm×n , compute an explicit formula parameterized by b ∈ R that determines the number of integer points in the polyhedron {x ∈R : Ax É b}. In the last decade, this counting problem has received considerable attention in the literature. Several variants of Barvinok’s algorithm have been shown to solve this pr...

متن کامل

Discrete Truncated Powers And Lattice Points In Rational Polytope ∗

Discrete truncate power is very useful for studying the number of nonnegative integer solutions of linear Diophantine equations. In this paper, some detail information about discrete truncated power is presented. To study the number of integer solutions of linear Diophantine inequations, the generalized truncated power and generalized discrete truncated power are defined and discussed respectiv...

متن کامل

On a class of combinatorial diophantine equations

We give a combinatorial proof for a second order recurrence for the polynomials pn(x), where pn(k) counts the number of integer-coordinate lattice points x = (x1, . . . , xn) with ‖x‖ = ∑n i=1|xi| ≤ k. This is the main step to get finiteness results on the number of solutions of the diophantine equation pn(x) = pm(y) if n and m have different parity. The combinatorial approach also allows to ex...

متن کامل

Ergodic Theory on Homogeneous Spaces and Metric Number Theory

Article outline This article gives a brief overview of recent developments in metric number theory, in particular, Diophantine approximation on manifolds, obtained by applying ideas and methods coming from dynamics on homogeneous spaces. Glossary 1. Definition: Metric Diophantine approximation 2. Basic facts 3. Introduction 4. Connection with dynamics on the space of lattices 5. Diophantine app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009